

Virtual Learning Essential Math 4 Unit 11

Lesson 5: Area Models

May 20, 2020

Essentials Math 4 Lesson 5: May 20, 2020

Learning Target: I can use area models to help write equations.

You will explore the use of multiplication and its relationship to exponents.

Directions:

- 1. Click through the slides.
- 2. Watch all videos on slides.
- 3. Do what each slide asks on a separate sheet of paper.

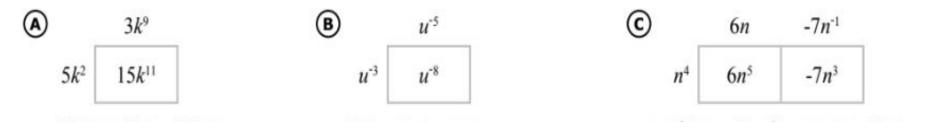
Bell Work: May 20, 2020

 Maria has 5 courses in her class schedule: math, painting, English, science, and geography.

- » Painting is directly between science and geography.
- » English is not first or last.
- » Geography is last.

What is the order of Maria's classes?

Bell Work Key May 20, 2020


> Geography is last, and painting is before it, and science is before painting. English must be second.

(1) Math (2) English (3) Science (4) Painting (5) Geography

Practice Problems: Unit 11 Lesson 5 page 23, # A-C

Use each area model to write three equations: one using multiplication and two using division.

Answer Key: After completing the problems, check your answers for page 23 here.

Use each area model to write three equations: one using multiplication and two using division.

(c) (A) $3k^9$ (B) u-5 6n $-7n^{-1}$ $-7n^{3}$ $5k^2$ u^{-3} u^{-8} $6n^5$ $15k^{11}$ n^4 $5k^2 \cdot 3k^9 = 15k!!$ $n^{4}(6n - 7n^{-1}) = 6n^{5} - 7n^{3}$ $11^{-3} \cdot 11^{-5} = 11^{-8}$ $\frac{15k!}{6k^2} = 3k^9$ $\frac{u^{-8}}{u^{-5}} = u^{-5}$ $\frac{6n^5 - 7n^5}{n^4} = 6n - 7n^4$ $\frac{6n^5 - 7n^3}{6n - 7n^4} = n^4$ $\frac{U^{-8}}{U^{-5}} = U^{-3}$ $\frac{15k!}{3k_{9}} = 5k^{2}$

Practice Problems: Unit 11 Lesson 5 page 23, # D-E

Use the area model to answer the multiplication or division problem.

D
$$(a^7 + 3a^4)(a^5 - 9) =$$

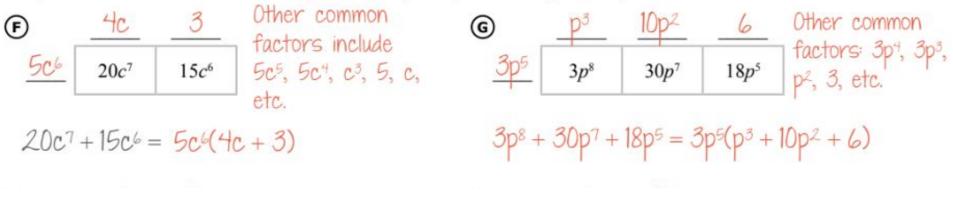
Answer Key: After completing the problems, check your answers for page 23 here.

Use the area model to answer the multiplication or division problem.

(a)
$$(a^7 + 3a^4)(a^5 - 9) = \frac{a^{12} + 3a^9 - 9a^7 - 27a^4}{3a^4}$$

(E) $\frac{45x^{10} + 72x^6}{9x^2} = \frac{5x^8 + 8x^4}{9x^2}$
 $\frac{a^7}{3a^4}$
 $\frac{a^5}{a^{12}}$
 $\frac{a^7}{3a^9}$
 $\frac{-9}{-9a^7}$
 $-27a^4$
(E) $\frac{45x^{10} + 72x^6}{9x^2} = \frac{5x^8 + 8x^4}{9x^2}$

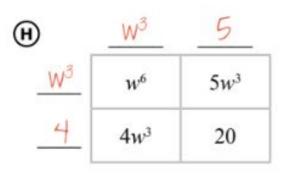
Practice Problems: Unit 11 Lesson 5 page 23, # F-G


Use the area model to answer the multiplication or division problem.

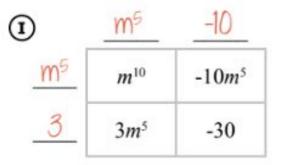

Answer Key: After completing the problems, check your answers for page 23 here.

Complete the area model and write an equation. Multiple ways of factoring may be possible. Find one.

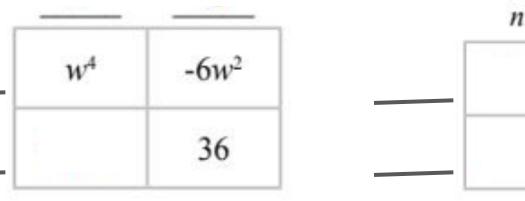
Practice Problems: Unit 11 Lesson 5 page 23, #H-I

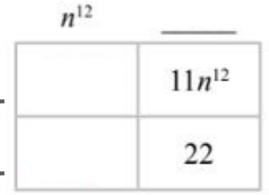


<i>m</i> ¹⁰	-10m ⁵
3 <i>m</i> ⁵	-30

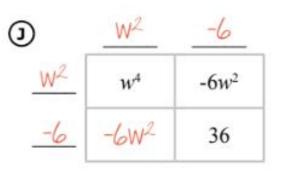

 $W^6 + 9W^3 + 20 =$

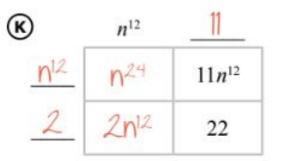
Answer Key: After completing the problems, check your answers for page 23 here.


 $w^{6} + 9w^{3} + 20 = (w^{3} + 4)(w^{3} + 5)$



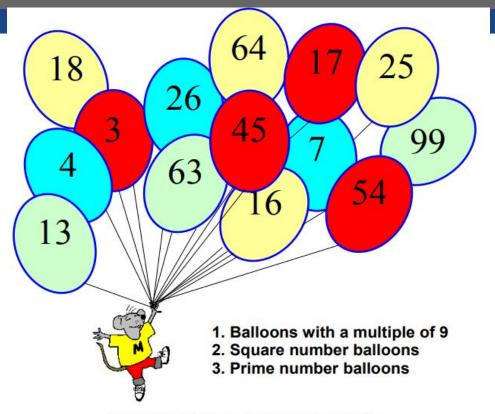
 $m^{10} - 7m^5 - 30 = (m^5 - 10)(m^5 + 3)$


Practice Problems: Unit 11 Lesson 5 page 23, # J-K



Answer Key: After completing the problems, check your answers for page 23 here.

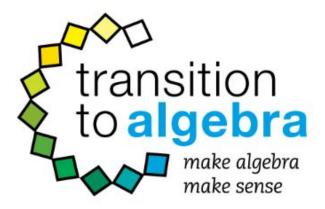
 $W^4 - 12W^2 + 36 = (W^2 - 6)^2$



 $n^{24} + 13n^{12} + 22 = (n^{12} + 2)(n^{12} + 11)$

<u>Fun Stuff</u>:

If a number in one of the balloons is included in the answers to the four problems below the balloons, then that balloon will fly away.


WHICH BALLOON IS LEFT?

Fun Stuff Answer: 26

Resources were developed at EDC (Education Development Center, Inc). EDC owns the copyright © 2011-2019

